Advertisement

Harmonizing Ethno-Regionally Diverse Datasets to Advance the Global Epidemiology of Dementia

Published:October 18, 2022DOI:https://doi.org/10.1016/j.cger.2022.07.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Geriatric Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • GBD 2019 Dementia Forecasting Collaborators
        Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019.
        Lancet Public Health. 2022; 7: e105-e125
        • Ravindranath V.
        • Sundarakumar J.S.
        Changing demography and the challenge of dementia in India.
        Nat Rev Neurol. 2021; 17: 747-758
      1. Prince M, Wimo A, Guerchet M, et al. World Alzheimer report 2015: the global impact of dementia. An analysis of prevalence, incidence, cost and trends. London: 2015.

        • Shiekh S.I.
        • Cadogan S.L.
        • Lin L.Y.
        • et al.
        Ethnic differences in dementia risk: a systematic review and meta-analysis.
        J Alzheimers Dis. 2021; 80: 337-355
        • Fortier I.
        • Raina P.
        • Van den Heuvel E.R.
        • et al.
        Maelstrom Research guidelines for rigorous retrospective data harmonization.
        Int J Epidemiol. 2017; 46: 103-105
        • Hussong A.M.
        • Curran P.J.
        • Bauer D.J.
        Integrative data analysis in clinical psychology research.
        Annu Rev Clin Psychol. 2013; 9: 61-89
        • Shishegar R.
        • Cox T.
        • Rolls D.
        • et al.
        Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI.
        Sci Rep. 2021; 11: 23788
        • Lipnicki D.M.
        • Makkar S.R.
        • Crawford J.D.
        • et al.
        Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: a COSMIC collaboration cohort study.
        Plos Med. 2019; 16: e1002853
      2. Griffith L, van den Heuvel E, Fortier I, et al. In: Harmonization of Cognitive Measures in Individual Participant Data and Aggregate Data Meta-Analysis. Rockville (MD): 2013.

        • Briceno E.M.
        • Gross A.L.
        • Giordani B.J.
        • et al.
        Pre-statistical Considerations for harmonization of cognitive instruments: harmonization of ARIC, CARDIA, CHS, FHS, MESA, and NOMAS.
        J Alzheimers Dis. 2021; 83: 1803-1813
        • Vonk J.M.J.
        • Gross A.L.
        • Zammit A.R.
        • et al.
        Cross-national harmonization of cognitive measures across HRS HCAP (USA) and LASI-DAD (India).
        PLoS One. 2022; 17: e0264166
      3. Elsevier.
        (Available at:)
      4. NIH.
        (Available at:)
        • Prince M.
        • Ferri C.P.
        • Acosta D.
        • et al.
        The protocols for the 10/66 dementia research group population-based research programme.
        BMC Public Health. 2007; 7: 165
        • Langa K.M.
        • Ryan L.H.
        • McCammon R.J.
        • et al.
        The health and retirement study harmonized cognitive assessment protocol project: study design and methods.
        Neuroepidemiology. 2020; 54: 64-74
        • Ibanez A.
        • Parra M.A.
        • Butler C.
        • et al.
        The Caribbean consortium on D. The Latin America and the Caribbean consortium on dementia (LAC-CD): from Networking to research to implementation Science.
        J Alzheimers Dis. 2021; 82: S379-S394
        • Fortier I.
        • Burton P.R.
        • Robson P.J.
        • et al.
        Quality, quantity and harmony: the DataSHaPER approach to integrating data across bioclinical studies.
        Int J Epidemiol. 2010; 39: 1383-1393
        • Doiron D.
        • Burton P.
        • Marcon Y.
        • et al.
        Data harmonization and federated analysis of population-based studies: the BioSHaRE project.
        Emerg Themes Epidemiol. 2013; 10: 12
        • Torres J.M.
        • Glymour M.M.
        Future Directions for the HRS harmonized cognitive assessment protocol.
        Forum Health Econ Policy, 2022
        • Lezak M.D.
        • Howieson D.B.
        • LD W.
        • et al.
        Neuropsychological assessment.
        4th ed. Oxford University Press, New York2004
        • Maruta C.
        • Guerreiro M.
        • de Mendonca A.
        • et al.
        The use of neuropsychological tests across Europe: the need for a consensus in the use of assessment tools for dementia.
        Eur J Neurol. 2011; 18: 279-285
        • Gross A.L.
        • Sherva R.
        • Mukherjee S.
        • et al.
        Calibrating longitudinal cognition in Alzheimer's disease across diverse test batteries and datasets.
        Neuroepidemiology. 2014; 43: 194-205
        • Griffith L.E.
        • van den Heuvel E.
        • Fortier I.
        • et al.
        Statistical approaches to harmonize data on cognitive measures in systematic reviews are rarely reported.
        J Clin Epidemiol. 2015; 68: 154-162
        • Abner E.L.
        • Schmitt F.A.
        • Nelson P.T.
        • et al.
        The statistical modeling of aging and risk of Transition project: data collection and harmonization across 11 longitudinal cohort studies of aging, cognition, and dementia.
        Obs Stud. 2015; 1: 56-73
        • Sachdev P.S.
        • Lipnicki D.M.
        • Kochan N.A.
        • et al.
        The prevalence of mild cognitive impairment in diverse Geographical and ethnocultural regions: the COSMIC collaboration.
        PLoS One. 2015; 10: e0142388
        • Griffith L.E.
        • van den Heuvel E.
        • Raina P.
        • et al.
        Comparison of standardization methods for the harmonization of Phenotype data: an application to cognitive measures.
        Am J Epidemiol. 2016; 184: 770-778
        • Lipnicki D.M.
        • Crawford J.D.
        • Dutta R.
        • et al.
        Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study.
        Plos Med. 2017; 14: e1002261
        • Bock R.D.
        • Gibbons R.D.
        Item response theory.
        John Wiiley & Sons Inc, 2021
        • Embretson S.E.
        • Reise S.P.
        Item response theory for psychologists.
        Erlbaum, Mahwah (NJ)2000
        • Bauer D.J.
        • Hussong A.M.
        Psychometric approaches for developing commensurate measures across independent studies: traditional and new models.
        Psychol Methods. 2009; 14: 101-125
        • Curran P.J.
        • Hussong A.M.
        • Cai L.
        • et al.
        Pooling data from multiple longitudinal studies: the role of item response theory in integrative data analysis.
        Dev Psychol. 2008; 44: 365-380
        • Gross A.L.
        • Mungas D.M.
        • Crane P.K.
        • et al.
        Effects of education and race on cognitive decline: an integrative study of generalizability versus study-specific results.
        Psychol Aging. 2015; 30: 863-880
        • Salthouse T.A.
        Localizing age-related individual differences in a hierarchical structure.
        Intelligence. 2004; 32
        • Burns R.A.
        • Butterworth P.
        • Kiely K.M.
        • et al.
        Multiple imputation was an efficient method for harmonizing the Mini-Mental State Examination with missing item-level data.
        J Clin Epidemiol. 2011; 64: 787-793
        • Jovicich J.
        • Barkhof F.
        • Babiloni C.
        • et al.
        Harmonization of neuroimaging biomarkers for neurodegenerative diseases: a survey in the imaging community of perceived barriers and suggested actions.
        Alzheimers Dement (Amst). 2019; 11: 69-73
      5. Alzheimer’s disease neuroimaging initiative.
        (Available at:)
      6. ENIGMA: Enhancing Neuro imaging Genetics through meta analysis.
        (Available at:)
      7. Cohorts for Heart and aging research in genomic epidemiology (CHARGE) consortium.
        (Available at:)
        • Fortin J.P.
        • Cullen N.
        • Sheline Y.I.
        • et al.
        Harmonization of cortical thickness measurements across scanners and sites.
        Neuroimage. 2018; 167: 104-120
        • Roseborough A.D.
        • Saad L.
        • Goodman M.
        • et al.
        White matter hyperintensities and longitudinal cognitive decline in cognitively normal populations and across diagnostic categories: a meta-analysis, systematic review, and recommendations for future study harmonization.
        Alzheimers Dement. 2022;
      8. HARNESS HARmoNising brain imaging MEthodS for VaScular contributions to neurodegeneration.
        (Available at:)
        • Frisoni G.B.
        • Jack Jr., C.R.
        • Bocchetta M.
        • et al.
        The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity.
        Alzheimers Dement. 2015; 11: 111-125
        • Samann P.G.
        • Iglesias J.E.
        • Gutman B.
        • et al.
        FreeSurfer-based segmentation of hippocampal subfields: a review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts.
        Hum Brain Mapp. 2022; 43: 207-233
        • Waller L.
        • Erk S.
        • Pozzi E.
        • et al.
        ENIGMA HALFpipe: Interactive, reproducible, and efficient analysis for resting-state and task-based fMRI data.
        Hum Brain Mapp. 2022; 43: 2727-2742
        • Guo C.
        • Niu K.
        • Luo Y.
        • et al.
        Intra-scanner and Inter-scanner reproducibility of Automatic white matter hyperintensities Quantification.
        Front Neurosci. 2019; 13: 679
        • Fortin J.P.
        • Parker D.
        • Tunc B.
        • et al.
        Harmonization of multi-site diffusion tensor imaging data.
        Neuroimage. 2017; 161: 149-170
        • Beer J.C.
        • Tustison N.J.
        • Cook P.A.
        • et al.
        Longitudinal ComBat: a method for harmonizing longitudinal multi-scanner imaging data.
        Neuroimage. 2020; 220: 117129
        • Yu M.
        • Linn K.A.
        • Cook P.A.
        • et al.
        Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data.
        Hum Brain Mapp. 2018; 39: 4213-4227
        • Eshaghzadeh Torbati M.
        • Minhas D.S.
        • Ahmad G.
        • et al.
        A multi-scanner neuroimaging data harmonization using RAVEL and ComBat.
        Neuroimage. 2021; 245: 118703
        • Garcia-Dias R.
        • Scarpazza C.
        • Baecker L.
        • et al.
        Neuroharmony: a new tool for harmonizing volumetric MRI data from unseen scanners.
        Neuroimage. 2020; 220: 117127
        • Marquand A.F.
        • Kia S.M.
        • Zabihi M.
        • et al.
        Conceptualizing mental disorders as deviations from normative functioning.
        Mol Psychiatry. 2019; 24: 1415-1424
        • Verdi S.
        • Marquand A.F.
        • Schott J.M.
        • et al.
        Beyond the average patient: how neuroimaging models can address heterogeneity in dementia.
        Brain. 2021; 144: 2946-2953
        • Moyer D.
        • Ver Steeg G.
        • Tax C.M.W.
        • et al.
        Scanner invariant representations for diffusion MRI harmonization.
        Magn Reson Med. 2020; 84: 2174-2189
        • Bayer J.M.M.
        • Thompson P.M.
        • Ching C.R.K.
        • et al.
        Site effects how-to & when: an overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses.
        PsyArXiv Preprints. 2022;
        • Prince M.
        • Bryce R.
        • Albanese E.
        • et al.
        The global prevalence of dementia: a systematic review and metaanalysis.
        Alzheimers Dement. 2013; 9: 63-75 e62
        • Erkinjuntti T.
        • Ostbye T.
        • Steenhuis R.
        • et al.
        The effect of different diagnostic criteria on the prevalence of dementia.
        N Engl J Med. 1997; 337: 1667-1674
        • Prince M.J.
        • de Rodriguez J.L.
        • Noriega L.
        • et al.
        The 10/66 Dementia Research Group's fully operationalised DSM-IV dementia computerized diagnostic algorithm, compared with the 10/66 dementia algorithm and a clinician diagnosis: a population validation study.
        BMC Public Health. 2008; 8: 219
        • GBD Dementia Collaborators
        Use of multidimensional item response theory methods for dementia prevalence prediction: an example using the Health and Retirement Survey and the Aging, Demographics, and Memory Study.
        BMC Med Inform Decis Mak. 2021; 21: 241
        • Costa A.
        • Bak T.
        • Caffarra P.
        • et al.
        The need for harmonisation and innovation of neuropsychological assessment in neurodegenerative dementias in Europe: consensus document of the Joint Program for Neurodegenerative Diseases Working Group.
        Alzheimers Res Ther. 2017; 9: 27
        • Chen D.
        • Jutkowitz E.
        • Iosepovici S.L.
        • et al.
        Pre-statistical harmonization of behavioral instruments across eight surveys and trials.
        BMC Med Res Methodol. 2021; 21: 227
        • Batterham P.J.
        • Sunderland M.
        • Slade T.
        • et al.
        Assessing distress in the community: psychometric properties and crosswalk comparison of eight measures of psychological distress.
        Psychol Med. 2018; 48: 1316-1324
        • Babiloni C.
        • Arakaki X.
        • Azami H.
        • et al.
        Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: recommendations of an expert panel.
        Alzheimers Dement. 2021; 17: 1528-1553
        • Prado P.
        • Birba A.
        • Cruzat J.
        • et al.
        Dementia ConnEEGtome: towards multicentric harmonization of EEG connectivity in neurodegeneration.
        Int J Psychophysiol. 2022; 172: 24-38
        • Jessen F.
        • Amariglio R.E.
        • van Boxtel M.
        • et al.
        A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease.
        Alzheimers Dement. 2014; 10: 844-852
        • Rohr S.
        • Pabst A.
        • Riedel-Heller S.G.
        • et al.
        Estimating prevalence of subjective cognitive decline in and across international cohort studies of aging: a COSMIC study.
        Alzheimers Res Ther. 2020; 12: 167
        • Ward A.
        • Arrighi H.M.
        • Michels S.
        • et al.
        Mild cognitive impairment: disparity of incidence and prevalence estimates.
        Alzheimers Dement. 2012; 8: 14-21
        • Mukadam N.
        • Sommerlad A.
        • Huntley J.
        • et al.
        Population attributable fractions for risk factors for dementia in low-income and middle-income countries: an analysis using cross-sectional survey data.
        Lancet Glob Health. 2019; 7: e596-e603