Advertisement

Nutrition and Alzheimer Disease

Published:August 24, 2018DOI:https://doi.org/10.1016/j.cger.2018.06.012

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Geriatric Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akbari E.
        • Asemi Z.
        • Daneshvar Kakhaki R.
        • et al.
        Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial.
        Front Aging Neurosci. 2016; 8: 256
      1. National Academies of Sciences Engineering and Medicine Leshner A.I. Landis S. Stroud C. Preventing cognitive decline and dementia. National Academies Press, Washington, DC2017
        • He Z.
        • Guo J.L.
        • McBride J.D.
        • et al.
        Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation.
        Nat Med. 2018; 24: 29-38
        • Mancuso C.
        • Santangelo R.
        Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence.
        Pharmacol Res. 2018; 129: 329-336
        • Akiyama H.
        • Barger S.
        • Barnum S.
        • et al.
        Inflammation and Alzheimer’s disease.
        Neurobiol Aging. 2000; 21: 383-421
        • Cattaneo A.
        • Cattane N.
        • Galluzzi S.
        • et al.
        Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly.
        Neurobiol Aging. 2017; 49: 60-68
        • Sadleir K.R.
        • Kandalepas P.C.
        • Buggia-Prévot V.
        • et al.
        Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease.
        Acta Neuropathol. 2016; 132: 235-256
        • Rubio-Perez J.M.
        • Morillas-Ruiz J.M.
        A review: inflammatory process in Alzheimer’s disease, role of cytokines.
        ScientificWorldJournal. 2012; 2012: 1-15
        • Franceschi C.
        • Bonafè M.
        • Valensin S.
        • et al.
        Inflamm-aging. An evolutionary perspective on immunosenescence.
        Ann N Y Acad Sci. 2000; 908: 244-254
        • Cacquevel M.
        • Lebeurrier N.
        • Chéenne S.
        • et al.
        Cytokines in neuroinflammation and Alzheimer’s disease.
        Curr Drug Targets. 2004; 5: 529-534
        • Franceschi C.
        • Campisi J.
        Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases.
        J Gerontol A Biol Sci Med Sci. 2014; 69: S4-S9
        • Streit W.J.
        • Xue Q.S.
        Alzheimer’s disease, neuroprotection, and CNS immunosenescence.
        Front Pharmacol. 2012; 3: 138
        • Alkasir R.
        • Li J.
        • Li X.
        • et al.
        Human gut microbiota: the links with dementia development.
        Protein Cell. 2017; 8: 90-102
        • García-Peña C.
        • Álvarez-Cisneros T.
        • Quiroz-Baez R.
        • et al.
        Microbiota and aging. A review and commentary.
        Arch Med Res. 2017; 48: 681-689
        • Zhao Y.
        • Lukiw W.J.
        Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD).
        J Nat Sci. 2015; 1: e138
        • Pistollato F.
        • Sumalla Cano S.
        • Elio I.
        • et al.
        Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease.
        Nutr Rev. 2016; 74: 624-634
        • Friedland R.P.
        Mechanisms of molecular mimicry involving the microbiota in neurodegeneration.
        J Alzheimers Dis. 2015; 45: 349-362
        • Caricilli A.M.
        • Saad M.J.A.
        The role of gut microbiota on insulin resistance.
        Nutrients. 2013; 5: 829-851
        • Cani P.D.
        • Delzenne N.M.
        The role of the gut microbiota in energy metabolism and metabolic disease.
        Curr Pharm Des. 2009; 15: 1546-1558
        • Harach T.
        • Marungruang N.
        • Duthilleul N.
        • et al.
        Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota.
        Sci Rep. 2017; 7 (41802)
        • Bischof G.N.
        • Park D.C.
        Obesity and aging: consequences for cognition, brain structure, and brain function.
        Psychosom Med. 2015; 77: 697-709
        • Dye L.
        • Boyle N.B.
        • Champ C.
        • et al.
        The relationship between obesity and cognitive health and decline.
        Proc Nutr Soc. 2017; 76: 443-454
        • Fotenos A.F.
        • Snyder A.Z.
        • Girton L.E.
        • et al.
        Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD.
        Neurology. 2005; 64: 1032-1039
        • Sezgin Z.
        • Dincer Y.
        Alzheimer’s disease and epigenetic diet.
        Neurochem Int. 2014; 78: 105-116
        • Chouliaras L.
        • Rutten B.P.F.
        • Kenis G.
        • et al.
        Epigenetic regulation in the pathophysiology of Alzheimer’s disease.
        Prog Neurobiol. 2010; 90: 498-510
        • Sarris J.
        • Logan A.C.
        • Akbaraly T.N.
        • et al.
        Nutritional medicine as mainstream in psychiatry.
        Lancet Psychiatry. 2015; 2: 271-274
        • Benton D.
        • Owens S.
        • Parker P.Y.
        Blood glucose influences memory in young adults and attention.
        Neuropsychologia. 1994; 32: 595-607
        • Warren R.E.
        • Frier B.M.
        Hypoglycaemia and cognitive function.
        Diabetes Obes Metab. 2005; 7: 493-503
        • Kodl C.T.
        • Seaquist E.R.
        Cognitive dysfunction and diabetes mellitus.
        Endocr Rev. 2008; 29: 494-511
        • Vieira M.N.N.
        • Lima-Filho R.A.S.
        • De Felice F.G.
        Connecting Alzheimer’s disease to diabetes: underlying mechanisms and potential therapeutic targets.
        Neuropharmacology. 2018; 136: 160-171
        • Cherbuin N.
        • Sachdev P.
        • Anstey K.J.
        Higher normal fasting plasma glucose is associated with hippocampal atrophy: The PATH Study.
        Neurology. 2012; 79: 1019-1026
        • An Y.
        • Varma V.R.
        • Varma S.
        • et al.
        Evidence for brain glucose dysregulation in Alzheimer’s disease.
        Alzheimers Dement. 2018; 14: 318-329
        • Wijesekara N.
        • Gonçalves da Silva R.A.
        • De Felice F.G.
        • et al.
        Impaired peripheral glucose homeostasis and Alzheimer’s disease.
        Neuropharmacology. 2018; 136: 172-181
        • Kar B.R.
        • Rao S.L.
        • Chandramouli B.A.
        Cognitive development in children with chronic protein energy malnutrition.
        Behav Brain Funct. 2008; 4: 31
        • Georgieff M.K.
        Nutrition and the developing brain: nutrient priorities and measurement.
        Am J Clin Nutr. 2007; 85: 614-620
        • Fernstrom J.D.
        • Fernstrom M.H.
        Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain.
        J Nutr. 2007; 137 ([discussion: 1548S]): 1539S-1547S
        • Noristani H.N.
        • Verkhratsky A.
        • Rodríguez J.J.
        High tryptophan diet reduces CA1 intraneuronal β-amyloid in the triple transgenic mouse model of Alzheimer’s disease.
        Aging Cell. 2012; 11: 810-822
        • Greenamyre J.T.
        • Young A.B.
        Excitatory amino acids and Alzheimer’s disease.
        Neurobiol Aging. 1989; 10: 593-602
        • Revett T.J.
        • Baker G.B.
        • Jhamandas J.
        • et al.
        Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology.
        J Psychiatry Neurosci. 2013; 38: 6-23
        • Kobayashi S.
        • Iwamoto M.
        • Kon K.
        • et al.
        Acetyl-l-carnitine improves aged brain function.
        Geriatr Gerontol Int. 2010; 10: 99-106
        • Yin Y.-Y.
        • Liu H.
        • Cong X.-B.
        • et al.
        Acetyl-L-carnitine attenuates okadaic acid induced tau hyperphosphorylation and spatial memory impairment in rats.
        J Alzheimers Dis. 2010; 19: 735-746
        • Zhou P.
        • Chen Z.
        • Zhao N.
        • et al.
        Acetyl-L-carnitine attenuates homocysteine-induced Alzheimer-like histopathological and behavioral abnormalities.
        Rejuvenation Res. 2011; 14: 669-679
        • Zhao Y.
        • Zhao B.
        Oxidative stress and the pathogenesis of Alzheimer’s disease.
        Oxid Med Cell Longev. 2013; 2013: 1-10
        • Fu A.-L.
        • Dong Z.-H.
        • Sun M.-J.
        Protective effect of N-acetyl-l-cysteine on amyloid β-peptide-induced learning and memory deficits in mice.
        Brain Res. 2006; 1109: 201-206
        • Robinson R.A.S.
        • Joshi G.
        • Huang Q.
        • et al.
        Proteomic analysis of brain proteins in APP/PS-1 human double mutant knock-in mice with increasing amyloid β-peptide deposition: insights into the effects of in vivo treatment with N-acetylcysteine as a potential therapeutic intervention in mild cognitive.
        Proteomics. 2012; 11: 4243-4256
        • Cunnane S.C.
        • Plourde M.
        • Pifferi F.
        • et al.
        Fish, docosahexaenoic acid and Alzheimer’s disease.
        Prog Lipid Res. 2009; 48: 239-256
        • Hjorth E.
        • Zhu M.
        • Toro V.C.
        • et al.
        Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-β42 by human microglia and decrease inflammatory markers.
        J Alzheimers Dis. 2013; 35: 697-713
        • Richard D.
        • Kefi K.
        • Barbe U.
        • et al.
        Polyunsaturated fatty acids as antioxidants.
        Pharmacol Res. 2008; 57: 451-455
        • Di Paolo G.
        • Kim T.-W.
        Linking lipids to Alzheimer’s disease: cholesterol and beyond.
        Nat Rev Neurosci. 2011; 12: 284-296
        • Morley J.E.
        Banks WA. Lipids and cognition.
        J Alzheimers Dis. 2010; 20: 737-747
        • West R.
        • Beeri M.S.
        • Schmeidler J.
        • et al.
        Better memory functioning associated with higher total and low-density lipoprotein cholesterol levels in very elderly subjects without the apolipoprotein e4 allele.
        Am J Geriatr Psychiatry. 2008; 16: 781-785
        • Nägga K.
        • Gustavsson A.-M.
        • Stomrud E.
        • et al.
        Increased midlife triglycerides predict brain β-amyloid and tau pathology 20 years later.
        Neurology. 2018; 90: e73-e81
        • Olson C.R.
        • Mello C.V.
        Significance of vitamin A to brain function, behavior and learning.
        Mol Nutr Food Res. 2010; 54: 489-495
        • Krezel W.
        • Kastner P.
        • Chambon P.
        Differential expression of retinoid receptors in the adult mouse central nervous system.
        Neuroscience. 1999; 89: 1291-1300
        • Ono K.
        • Yamada M.
        Vitamin A and Alzheimer’s disease.
        Geriatr Gerontol Int. 2012; 12: 180-188
        • Gibson G.E.
        • Hirsch J.A.
        • Fonzetti P.
        • et al.
        Vitamin B1 (thiamine) and dementia.
        Ann N Y Acad Sci. 2016; 1: 21-30
        • Karuppagounder S.S.
        • Xu H.
        • Shi Q.
        • et al.
        Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model.
        Neurobiol Aging. 2009; 30: 1587-1600
        • Hughes R.N.
        • Hancock N.J.
        • Thompson R.M.
        Anxiolysis and recognition memory enhancement with long-term supplemental ascorbic acid ( vitamin C ) in normal rats: possible dose dependency and sex differences.
        Ann Neurosci Psychol. 2015; 2: 1-9
        • Harrison F.E.
        • Bowman G.L.
        • Polidori M.C.
        Ascorbic acid and the brain: rationale for the use against cognitive decline.
        Nutrients. 2014; 6: 1752-1781
        • Dixit S.
        • Bernardo A.
        • Walker J.M.
        • et al.
        Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice.
        ACS Chem Neurosci. 2015; 6: 570-581
        • Kesby J.P.
        • Eyles D.W.
        • Burne T.H.J.
        • et al.
        The effects of vitamin D on brain development and adult brain function.
        Mol Cell Endocrinol. 2011; 347: 121-127
        • Schlogl M.
        • Holick M.F.
        Vitamin D and neurocognitive function.
        Clin Interv Aging. 2014; 9: 559-568
        • Berridge M.J.
        Calcium regulation of neural rhythms, memory and Alzheimer’s disease.
        J Physiol. 2014; 592: 281-293
        • Mangialasche F.
        • Xu W.
        • Kivipelto M.
        • et al.
        Tocopherols and tocotrienols plasma levels are associated with cognitive impairment.
        Neurobiol Aging. 2012; 33: 2282-2290
        • Morris M.C.
        • Evans D.A.
        • Tangney C.C.
        • et al.
        Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change.
        Am J Clin Nutr. 2005; 81: 508-514
        • Ferland G.
        Vitamin K, an emerging nutrient in brain function.
        Biofactors. 2012; 38: 151-157
        • Kennedy D.O.
        • Haskell C.F.
        Vitamins and cognition: what is the evidence?.
        Drugs. 2011; 71: 1957-1971
        • Flicker L.
        • Martins R.N.
        • Thomas J.
        • et al.
        B-vitamins reduce plasma levels of beta amyloid.
        Neurobiol Aging. 2008; 29: 303-305
        • Selhub J.
        • Troen A.
        • Rosenberg I.H.
        B vitamins and the aging brain.
        Nutr Rev. 2010; 68: S112-S118
        • Black M.M.
        Effects of vitamin B 12 and folate deficiency on brain development in children.
        Food Nutr Bull. 2008; 29: S126-S131
        • Rafiee S.
        • Asadollahi K.
        • Riazi G.
        • et al.
        Vitamin B12 inhibits tau fibrillization via binding to cysteine residues of tau.
        ACS Chem Neurosci. 2017; 8: 2676-2682
        • Veronese N.
        • Zurlo A.
        • Solmi M.
        • et al.
        Magnesium status in Alzheimer’s disease: a systematic review.
        Am J Alzheimers Dis Other Demen. 2015; 31: 208-213
        • Xu Z.P.
        • Li L.
        • Bao J.
        • et al.
        Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model.
        PLoS One. 2014; 9: 1-11
        • Yu J.
        • Sun M.
        • Chen Z.
        • et al.
        Magnesium modulates amyloid-β protein precursor trafficking and processing.
        J Alzheimers Dis. 2010; 20: 1091-1106
        • Takeda A.
        Manganese action in brain function.
        Brain Res Brain Res Rev. 2003; 41: 79-87
        • Thomas H.
        • Rupniak R.
        • Joy K.A.
        • et al.
        Oxidative neuropathology and putative chemical entities for Alzheimer’s disease: neuroprotective effects of salen-manganese catalytic anti-oxidants.
        Neurotox Res. 2000; 2: 167-178
        • Schweizer U.
        • Bräuer A.U.
        • Köhrle J.
        • et al.
        Selenium and brain function: a poorly recognized liaison.
        Brain Res Brain Res Rev. 2004; 45: 164-178
        • Rayman M.
        • Thompson A.
        • Warren-perry M.
        • et al.
        Impact of selenium on mood and quality of life: a randomized, controlled trial.
        Biol Psychiatry. 2006; 59: 147-154
        • Squitti R.
        • Lupoi D.
        • Pasqualetti P.
        • et al.
        Elevation of serum copper levels in Alzheimer’s disease.
        Neurology. 2002; 59: 1153-1161
        • Rouault T.A.
        • Cooperman S.
        Brain iron metabolism.
        Semin Pediatr Neurol. 2006; 13: 142-148
        • Sensi S.L.
        • Paoletti P.
        • Koh J.-Y.
        • et al.
        The neurophysiology and pathology of brain zinc.
        J Neurosci. 2011; 31: 16076-16085
        • Huang X.
        • Cuajungco M.P.
        • Atwood C.S.
        • et al.
        Alzheimer’s disease, beta-amyloid protein and zinc.
        J Nutr. 2000; 130: 1488S-1492S
        • Adlard P.A.
        • Parncutt J.
        • Lal V.
        • et al.
        Metal chaperones prevent zinc-mediated cognitive decline.
        Neurobiol Dis. 2015; 81: 196-202
        • Frederickson C.J.
        • Koh J.-Y.
        • Bush A.I.
        The neurobiology of zinc in health and disease.
        Nat Rev Neurosci. 2005; 6: 449-462
        • Williams R.J.
        • Spencer J.P.E.
        Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease.
        Free Radic Biol Med. 2012; 52: 35-45
        • Sahu B.D.
        • Kalvala A.K.
        • Koneru M.
        • et al.
        Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.
        PLoS One. 2014; 9: e105070
        • Basli A.
        • Soulet S.
        • Chaher N.
        • et al.
        Wine polyphenols: potential agents in neuroprotection.
        Oxid Med Cell Longev. 2012; 2012: 805762
        • Ross J.A.
        • Kasum C.M.
        Dietary flavonoids: bioavailability, metabolic effects, and safety.
        Annu Rev Nutr. 2002; 22: 19-34
        • Dueñas M.
        • Muñoz-González I.
        • Cueva C.
        • et al.
        A survey of modulation of gut microbiota by dietary polyphenols.
        Biomed Res Int. 2015; 2015: 1-15
        • Muñoz Fernández S.S.
        • Ivanauskas T.
        • Lima Ribeiro S.M.
        Nutritional strategies in the management of Alzheimer disease: systematic review with network meta-analysis.
        J Am Med Dir Assoc. 2017; 18: 897.e13-30
        • Cao L.
        • Tan L.
        • Wang H.
        • et al.
        Dietary patterns and risk of dementia: a systematic review and meta-analysis of cohort studies.
        Mol Neurobiol. 2016; 53: 6144-6154
        • Singh B.
        • Parsaik A.K.
        • Mielke M.M.
        • et al.
        Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis.
        J Alzheimers Dis. 2014; 39: 271-282
        • Petersson S.D.
        • Philippou E.
        Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence.
        Adv Nutr. 2016; : 889-904
        • Gu Y.
        • Scarmeas N.
        Dietary patterns in Alzheimer’s disease and cognitive aging.
        Curr Alzheimer Res. 2011; 8: 510-519
        • Morris M.C.
        • Tangney C.C.
        • Wang Y.
        • et al.
        MIND diet associated with reduced incidence of Alzheimer’s disease.
        Alzheimers Dement. 2015; 11: 1007-1014
        • Zeng L.-F.
        • Cao Y.
        • Liang W.-X.
        • et al.
        An exploration of the role of a fish-oriented diet in cognitive decline: a systematic review of the literature.
        Oncotarget. 2017; 8: 39877-39895
        • Squitti R.
        • Siotto M.
        • Polimanti R.
        Low-copper diet as a preventive strategy for Alzheimer’s disease.
        Neurobiol Aging. 2014; 35: S40-S50
        • Seneff S.
        • Wainwright G.
        • Mascitelli L.
        Nutrition and Alzheimer’s disease: the detrimental role of a high carbohydrate diet.
        Eur J Intern Med. 2011; 22: 134-140
        • Perrone L.
        • Grant W.B.
        Observational and ecological studies of dietary advanced glycation end products in national diets and Alzheimer’s disease incidence and prevalence.
        J Alzheimers Dis. 2015; 45: 965-979
        • Gillette-Guyonnet S.
        • Nourhashemi F.
        • Andrieu S.
        • et al.
        Weight loss in Alzheimer disease.
        Am J Clin Nutr. 2000; 71: 637S-642S
        • Droogsma E.
        • van Asselt D.
        • De Deyn P.P.
        Weight loss and undernutrition in community-dwelling patients with Alzheimer’s dementia: from population-based studies to clinical management.
        Z Gerontol Geriatr. 2015; 48: 318-324
        • Saragat B.
        • Buffa R.
        • Mereu E.
        • et al.
        Nutritional and psycho-functional status in elderly patients with Alzheimer’s disease.
        J Nutr Health Aging. 2012; 16: 231-236