Advertisement

Mild Cognitive Impairment

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Geriatric Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Petersen R.C.
        • Smith G.E.
        • Waring S.C.
        • et al.
        Aging, memory and mild cognitive impairment.
        Int Psychogeriatr. 1997; 9: 65-69
        • Sachdev P.S.
        • Blackner D.
        • Blazer D.G.
        • et al.
        Classifying neurocognitive disorders: the DSM-5 approach.
        Nat Rev Neurol. 2014; 10: 634-642
        • American Psychiatric Association
        Diagnostic and statistical manual of mental disorders.
        5th edition. American Psychiatric Association, Arlington (VA)2013
        • Petersen R.C.
        • Morris J.C.
        Mild cognitive impairment as a clinical entity and treatment target.
        Arch Neurol. 2005; 62: 1160-1163
        • Stokin G.B.
        • Krell-Roesch J.
        • Petersen R.C.
        • et al.
        Mild neurocognitive disorder: an old wine in a new bottle.
        Harv Rev Psychiatry. 2015; 23: 368-376
        • Petersen R.C.
        • Roberts R.O.
        • Knopman D.S.
        • et al.
        Prevalence of mild cognitive impairment is higher in men. The Mayo clinic study of aging.
        Neurology. 2010; 75: 889-897
        • Ganguli M.
        • Dodge H.H.
        • Shen C.
        • et al.
        Mild cognitive impairment, amnestic type: an epidemiologic study.
        Neurology. 2004; 63: 115-121
        • Hanninen T.
        • Hallikainen M.
        • Tuomainen S.
        • et al.
        Prevalence of mild cognitive impairment: a population-based study in elderly subjects.
        Acta Neurol Scand. 2002; 106: 148-154
        • Pandya S.Y.
        • Clem M.A.
        • Silva L.M.
        • et al.
        Does mild cognitive impairment always lead to dementia? A review.
        J Neurol Sci. 2016; 369: 57-62
        • Roberts R.O.
        • Geda Y.E.
        • Knopman D.S.
        • et al.
        The incidence of MCI differs by subtype and is higher in men.
        Neurology. 2012; 78: 342-351
        • Caselli R.J.
        • Dueck A.C.
        • Osborne D.
        • et al.
        Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect.
        N Engl J Med. 2009; 361: 255-263
        • Ng T.P.
        • Feng L.
        • Nyunt M.S.
        • et al.
        Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the Singapore Longitudinal Ageing Study Cohort.
        JAMA Neurol. 2016; 73: 456-463
        • Vassilaki M.
        • Aakre J.A.
        • Cha R.H.
        • et al.
        Multimorbidity and risk of mild cognitive impairment.
        J Am Geriatr Soc. 2015; 63: 1783-1790
        • Singh B.
        • Mielke M.M.
        • Parsaik A.K.
        • et al.
        A prospective study of chronic obstructive pulmonary disease and the risk for mild cognitive impairment.
        JAMA Neurol. 2014; 71: 581-588
        • Geda Y.E.
        • Roberts R.O.
        • Mielke M.M.
        • et al.
        Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a population-based study.
        Am J Psychiatry. 2014; 171: 572-581
        • Roberts R.O.
        • Knopman D.S.
        • Geda Y.E.
        • et al.
        Association of diabetes with amnestic and nonamnestic mild cognitive impairment.
        Alzheimers Dement. 2014; 10: 18-26
        • Verghese J.
        • LeValley A.
        • Derby C.
        • et al.
        Leisure activities and the risk of amnestic mild cognitive impairment in the elderly.
        Neurology. 2006; 66: 821-827
        • Geda Y.E.
        • Roberts R.O.
        • Knopman D.S.
        • et al.
        Physical exercise, aging, and mild cognitive impairment: a population-based study.
        Arch Neurol. 2010; 67: 80-86
        • Han J.W.
        • Kim T.H.
        • Lee S.B.
        • et al.
        Predictive validity and diagnostic stability of mild cognitive impairment subtypes.
        Alzheimers Dement. 2012; 8: 553-559
        • Manly J.J.
        • Tang M.X.
        • Schupf N.
        • et al.
        Frequency and course of mild cognitive impairment in a multiethnic community.
        Ann Neurol. 2008; 63: 494-506
        • Ravaglia G.
        • Forti P.
        • Montesi F.
        • et al.
        Mild cognitive impairment: epidemiology and dementia risk in an elderly Italian population.
        J Am Geriatr Soc. 2008; 56: 51-58
        • Artero S.
        • Ancelin M.L.
        • Portet F.
        • et al.
        Risk profiles for mild cognitive impairment and progression to dementia are gender specific.
        J Neurol Neurosurg Psychiatr. 2008; 79: 979-984
        • Sachdev P.S.
        • Lipnicki D.M.
        • Crawford J.
        • et al.
        Factors predicting reversion from mild cognitive impairment to normal cognitive functioning: a population-based study.
        PLoS One. 2013; 8: e59649
        • Mitchell A.J.
        • Shiri-Feshki A.
        Rate of progression of mild cognitive impairment to dementia—meta-analysis of 41 robust inception cohort studies.
        Acta Psychiatr Scand. 2009; 119: 252-265
        • Roberts R.O.
        • Knopman D.S.
        • Mielke M.M.
        • et al.
        Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal.
        Neurology. 2014; 82: 317-325
        • Morris J.C.
        Mild cognitive impairment is early-stage Alzheimer disease: time to revise diagnostic criteria.
        Arch Neurol. 2006; 63: 15-16
        • Molano J.
        • Boeve B.
        • Ferman T.
        • et al.
        Mild cognitive impairment associated with limbic and neocortical Lewy body disease: a clinicopathological study.
        Brain. 2010; 133: 540-556
        • Campbell N.
        • Boustani M.
        • Limbil T.
        • et al.
        The cognitive impact of anticholinergics: a clinical review.
        Clin Interv Aging. 2009; 4: 225-233
        • Morley J.E.
        Anticholinergic medications and cognition.
        J Am Med Dir Assoc. 2011; 12: 543.e1
        • Elmstahl S.
        • Widerstrom E.
        Orthostatic intolerance predicts mild cognitive impairment: incidence of mild cognitive impairment and dementia from the Swedish general population cohort good aging in Skane.
        Clin Interv Aging. 2014; 9: 1993-2002
        • Liu H.
        • Gao S.
        • Hall K.S.
        • et al.
        Optimal blood pressure for cognitive function: findings from an elderly African-American cohort study.
        J Am Geriatr Soc. 2013; 61: 875-881
        • Johnson L.A.
        • Hall J.R.
        • O’Bryant S.E.
        A depressive endophenotype of mild cognitive impairment and Alzheimer’s disease.
        PLoS One. 2013; 8: 1-8
        • Modrego P.J.
        • Ferrandez J.
        Depression in patients with mild cognitive impairment increases the risk of developing dementia of Alzheimer type: a prospective cohort study.
        Arch Neurol. 2004; 61: 1290-1293
        • Van Boxtel M.P.
        • Menheere P.P.
        • Bekers O.
        • et al.
        Thyroid function, depressed mood, and cognitive performance in older individuals: the Maastricht Aging Study.
        Psychoneuroendocrinology. 2004; 29: 891-898
        • Yaffe K.
        • Falvey C.M.
        • Hamilton N.
        • et al.
        Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus.
        JAMA Intern Med. 2013; 173: 1300-1306
        • Bonetti F.
        • Brombo G.
        • Magon S.
        • et al.
        Cognitive status according to homocysteine and B-group vitamins in elderly adults.
        J Am Geriatr Soc. 2015; 63: 1158-1163
        • Chen L.Y.
        • Agarwal S.K.
        • Norby F.L.
        • et al.
        Persistent but not paroxysmal atrial fibrillation is independently associated with lower cognitive function: ARIC Study.
        J Am Coll Cardiol. 2016; 67: 1379-1380
        • Daulatzai M.A.
        Evidence of neurodegeneration in obstructive sleep apnea: relationship between obstructive sleep apnea and cognitive dysfunction in the elderly.
        J Neurosci Res. 2015; 93: 1778-1794
        • Cruz-Oliver D.M.
        • Malmstrom T.K.
        • Roegner M.
        • et al.
        Cognitive deficit reversal as shown by changes in the veterans affairs Saint Louis University mental status (SLUMS) examination scores 7.5 years later.
        J Am Med Dir Assoc. 2014; 15: 687.e5-10
        • Picascia M.
        • Zangaglia R.
        • Bernini S.
        • et al.
        A review of cognitive impairment and differential diagnosis in idiopathic normal pressure hydrocephalus.
        Funct Neurol. 2015; 30: 217-228
        • Morley J.E.
        • Morris J.C.
        • Berg-Wegner M.
        • et al.
        Brain health: the importance of recognizing cognitive impairment: an IAGG consensus conference.
        J Am Med Dir Assoc. 2015; 16: 731-739
        • Bradford A.
        • Kunik M.E.
        • Schulz P.
        • et al.
        Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors.
        Alzheimer Dis Assoc Disord. 2009; 23: 306-314
        • Tariq S.H.
        • Tumosa N.
        • Chibnall J.T.
        • et al.
        Comparison of the Saint Louis University mental status examination and the mini-mental state examination for detecting dementia and mild neurocognitive disorder—a pilot study.
        Am J Geriatr Psychiatry. 2006; 14: 900-910
        • Malmstrom T.K.
        • Voss V.B.
        • Cruz-Oliver D.M.
        • et al.
        Rapid cognitive screen (RCS): a point-of-care screening for dementia and mild cognitive impairment.
        J Nutr Health Aging. 2015; 19: 741-744
        • Nasreddine Z.S.
        • Phillips N.A.
        • Bedirian V.
        • et al.
        The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment.
        J Am Geriatr Soc. 2005; 53: 695-699
        • Yuan Y.
        • Gu Z.X.
        • Wei W.S.
        Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis.
        AJNR Am J Neuroradiol. 2009; 30: 404-410
        • Karow D.S.
        • McEvoy L.K.
        • Fennema-Notestine C.
        • et al.
        Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease.
        Radiology. 2010; 256: 932-942
        • Wicklund M.
        • Petersen R.C.
        Emerging biomarkers in cognition.
        Clin Geriatr Med. 2013; 29: 809-828
        • Mattsson N.
        • Zetterberg H.
        • Hansson O.
        • et al.
        CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment.
        JAMA. 2009; 302: 385-393
        • Hansson O.
        • Zetterberg H.
        • Buchhave P.
        • et al.
        Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study.
        Lancet Neurol. 2006; 5: 228-234
        • Johnson K.A.
        • Minoshima S.
        • Bohnen N.I.
        • et al.
        Appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the society of nuclear medicine and molecular imaging, and the Alzheimer’s Association.
        Alzheimers Dement. 2013; 9: e1-e16
        • Jack C.R.
        • Wiste H.J.
        • Vemuri P.
        • et al.
        Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease.
        Brain. 2010; 133: 3336-3348
        • Ishii K.
        PET approaches for diagnosis of dementia.
        AJNR Am J Neuroradiol. 2014; 35: 2030-2038
        • Ganguli M.
        • Fu B.
        • Snitz B.E.
        • et al.
        Mild cognitive impairment: incidence and vascular risk factors in a population-based cohort.
        Neurology. 2013; 80: 2112-2120
        • Raschetti R.
        • Albanese E.
        • Vanacore N.
        Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials.
        PLos Med. 2007; 4: e338
        • Cooper C.
        • Li R.
        • Lyketsos C.
        • et al.
        A systematic review of treatments for mild cognitive impairment.
        Br J Psychiatry. 2013; 203: 255-264
        • Petersen R.C.
        • Thomas R.G.
        • Grundman M.
        Vitamin E and donepezil for the treatment of mild cognitive impairment.
        N Engl J Med. 2005; 352: 2379-2388
        • Naeini A.M.
        • Elmadfa I.
        • Djazayery A.
        • et al.
        The effect of antioxidant vitamins E and C on cognitive performance of the elderly with mild cognitive impairment in Isfahan, Iran: a double-blind, randomized, placebo-controlled trial.
        Eur J Nutr. 2014; 53: 1255062
        • Li M.M.
        • Yu J.T.
        • Wang H.F.
        • et al.
        Efficacy of vitamins B supplementation on mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis.
        Curr Alzheimer Res. 2014; 11: 844-852
        • Snitz B.E.
        • O’Meara E.S.
        • Carlson M.C.
        • et al.
        Ginko biloba for preventing cognitive decline in older adults: a randomized trial.
        JAMA. 2009; 302: 2663-2670
        • Krause D.
        • Roupas P.
        Effect of vitamin intake on cognitive decline in older adults: evaluation of the evidence.
        J Nutr Health Aging. 2015; 19: 745-753
        • Cheng D.
        • Kong H.
        • Pang W.
        • et al.
        B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia.
        Nutr Neurosci. 2016; 19: 461-466
        • Solfrizzi V.
        • Panza F.
        Mediterranean diet and cognitive decline. A lesson learned from the whole diet approach: what challenges lie ahead?.
        J Alzheimers Dis. 2014; 39: 283-286
        • Singh B.
        • Parsaik A.K.
        • Mielke M.M.
        • et al.
        Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis.
        J Alzheimers Dis. 2014; 39: 271-282
        • Sofi F.
        • Valecchi D.
        • Bacci D.
        • et al.
        Physical activity and risk of cognitive decline: a meta-analysis of prospective studies.
        J Intern Med. 2011; 269: 107-117
        • Gomez-Pinilla F.
        • So V.
        • Kesslak J.P.
        Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise.
        Neuroscience. 1998; 85: 53-61
        • Hall C.B.
        • Lipton R.B.
        • Sliwinski M.
        • et al.
        Cognitive activities delay onset of memory decline in persons who develop dementia.
        Neurology. 2009; 73: 356-361
        • Aguirre E.
        • Woods R.T.
        • Spector A.
        • et al.
        Cognitive stimulation for dementia: a systematic review of the evidence of effectiveness from randomised controlled trials.
        Ageing Res Rev. 2013; 12: 253-262