Advertisement
Review Article| Volume 25, ISSUE 4, P715-732, November 2009

Download started.

Ok

Cellular Mechanisms of Cardioprotection by Calorie Restriction: State of the Science and Future Perspectives

  • Emanuele Marzetti
    Correspondence
    Corresponding author. Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 1600 SW Archer Road, Room P1-09, PO Box 100143, Gainesville, FL 32610.
    Affiliations
    Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 1600 SW Archer Road, Room P1-09, PO Box 100143, Gainesville, FL 32610-0143, USA

    Department of Orthopaedics and Traumatology, Catholic University of the Sacred Heart, Largo F. Vito, 1, 00168, Rome 00168, Italy
    Search for articles by this author
  • Stephanie E. Wohlgemuth
    Affiliations
    Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 1600 SW Archer Road, Room P1-08, PO Box 100143, Gainesville, FL 32610-0143, USA
    Search for articles by this author
  • Stephen D. Anton
    Affiliations
    Department of Aging and Geriatric Research, Institute on Aging, University of Florida, PO Box 112610, Gainesville, FL 32610-0143, USA
    Search for articles by this author
  • Roberto Bernabei
    Affiliations
    Department of Gerontology, Geriatrics and Physiatrics, Catholic University of the Sacred Heart, Large F. Vito, 1, 00168, Rome, Italy
    Search for articles by this author
  • Christy S. Carter
    Affiliations
    Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 210 East Mowry Drive, PO Box 112610, Gainesville, FL 32611, USA
    Search for articles by this author
  • Christiaan Leeuwenburgh
    Correspondence
    Corresponding author.
    Affiliations
    Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 210 East Mowry Drive, PO Box 112610, Gainesville, FL 32611, USA
    Search for articles by this author

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Clinics in Geriatric Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murray C.J.
        • Lopez A.D.
        Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study.
        Lancet. 1997; 349: 1436-1442
        • Braunwald E.
        Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities.
        N Engl J Med. 1997; 337: 1360-1369
        • Carbonin P.
        • Zuccala G.
        • Marzetti E.
        • et al.
        Coronary risk factors in the elderly: their interactions and treatment.
        Curr Pharm Des. 2003; 9: 2465-2478
        • Kannel W.B.
        Cardiovascular risk factors in the elderly.
        Coron Artery Dis. 1997; 8: 565-575
        • Chung H.Y.
        • Cesari M.
        • Anton S.
        • et al.
        Molecular inflammation: underpinnings of aging and age-related diseases.
        Ageing Res Rev. 2009; 8: 18-30
        • McCullough P.A.
        • Philbin E.F.
        • Spertus J.A.
        • et al.
        Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) study.
        J Am Coll Cardiol. 2002; 39: 60-69
        • Rich M.W.
        Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults.
        J Am Geriatr Soc. 1997; 45: 968-974
        • MacIntyre K.
        • Capewell S.
        • Stewart S.
        • et al.
        Evidence of improving prognosis in heart failure: trends in case fatality in 66547 patients hospitalized between 1986 and 1995.
        Circulation. 2000; 102: 1126-1131
        • Weindruch R.
        • Walford R.L.
        The retardation of aging and disease by dietary restriction.
        Charles C Thomas Publisher, Springfield (IL)1988
        • Dirks A.J.
        • Leeuwenburgh C.
        Caloric restriction in humans: potential pitfalls and health concerns.
        Mech Ageing Dev. 2006; 127: 1-7
        • Weindruch R.
        • Walford R.L.
        • Fligiel S.
        • et al.
        The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake.
        J Nutr. 1986; 116: 641-654
        • Kemi M.
        • Keenan K.P.
        • McCoy C.
        • et al.
        The relative protective effects of moderate dietary restriction versus dietary modification on spontaneous cardiomyopathy in male Sprague-Dawley rats.
        Toxicol Pathol. 2000; 28: 285-296
        • Fontana L.
        • Meyer T.E.
        • Klein S.
        • et al.
        Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans.
        Proc Natl Acad Sci U S A. 2004; 101: 6659-6663
        • Meyer T.E.
        • Kovacs S.J.
        • Ehsani A.A.
        • et al.
        Long-term caloric restriction ameliorates the decline in diastolic function in humans.
        J Am Coll Cardiol. 2006; 47: 398-402
        • Harman D.
        Aging: a theory based on free radical and radiation chemistry.
        J Gerontol. 1956; 11: 298-300
        • Harman D.
        The biologic clock: the mitochondria?.
        J Am Geriatr Soc. 1972; 20: 145-147
        • Yu B.P.
        • Yang R.
        Critical evaluation of the free radical theory of aging. A proposal for the oxidative stress hypothesis.
        Ann N Y Acad Sci. 1996; 786: 1-11
        • de Grey A.D.
        A proposed refinement of the mitochondrial free radical theory of aging.
        Bioessays. 1997; 19: 161-166
        • Brunk U.T.
        • Terman A.
        The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis.
        Eur J Biochem. 2002; 269: 1996-2002
        • Sohal R.S.
        • Ku H.H.
        • Agarwal S.
        • et al.
        Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse.
        Mech Ageing Dev. 1994; 74: 121-133
        • Sohal R.S.
        • Agarwal S.
        • Candas M.
        • et al.
        Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice.
        Mech Ageing Dev. 1994; 76: 215-224
        • Leeuwenburgh C.
        • Wagner P.
        • Holloszy J.O.
        • et al.
        Caloric restriction attenuates dityrosine cross-linking of cardiac and skeletal muscle proteins in aging mice.
        Arch Biochem Biophys. 1997; 346: 74-80
        • Kaneko T.
        • Tahara S.
        • Matsuo M.
        Retarding effect of dietary restriction on the accumulation of 8-hydroxy-2'-deoxyguanosine in organs of Fischer 344 rats during aging.
        Free Radic Biol Med. 1997; 23: 76-81
        • Barja G.
        • Herrero A.
        Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.
        FASEB J. 2000; 14: 312-318
        • Judge S.
        • Jang Y.M.
        • Smith A.
        • et al.
        Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging.
        FASEB J. 2005; 19: 419-421
        • Hayakawa M.
        • Hattori K.
        • Sugiyama S.
        • et al.
        Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts.
        Biochem Biophys Res Commun. 1992; 189: 979-985
        • Dhalla N.S.
        • Golfman L.
        • Takeda S.
        • et al.
        Evidence for the role of oxidative stress in acute ischemic heart disease: a brief review.
        Can J Cardiol. 1999; 15: 587-593
        • Grieve D.J.
        • Byrne J.A.
        • Cave A.C.
        • et al.
        Role of oxidative stress in cardiac remodelling after myocardial infarction.
        Heart Lung Circ. 2004; 13: 132-138
        • Seddon M.
        • Looi Y.H.
        • Shah A.M.
        Oxidative stress and redox signalling in cardiac hypertrophy and heart failure.
        Heart. 2007; 93: 903-907
        • Rodriguez-Manas L.
        • El-Assar M.
        • Vallejo S.
        • et al.
        Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation.
        Aging Cell. 2009; 8: 226-238
        • Ogita H.
        • Liao J.
        Endothelial function and oxidative stress.
        Endothelium. 2004; 11: 123-132
        • Gredilla R.
        • Sanz A.
        • Lopez-Torres M.
        • et al.
        Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart.
        FASEB J. 2001; 15: 1589-1591
        • Pamplona R.
        • Portero-Otin M.
        • Bellmun M.J.
        • et al.
        Aging increases Nepsilon-(carboxymethyl)lysine and caloric restriction decreases Nepsilon-(carboxyethyl)lysine and Nepsilon-(malondialdehyde)lysine in rat heart mitochondrial proteins.
        Free Radic Res. 2002; 36: 47-54
        • Pamplona R.
        • Portero-Otin M.
        • Requena J.
        • et al.
        Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after 4 months of caloric restriction than in age-matched controls.
        Mech Ageing Dev. 2002; 123: 1437-1446
        • Diniz Y.S.
        • Cicogna A.C.
        • Padovani C.R.
        • et al.
        Dietary restriction and fibre supplementation: oxidative stress and metabolic shifting for cardiac health.
        Can J Physiol Pharmacol. 2003; 81: 1042-1048
        • Colom B.
        • Oliver J.
        • Roca P.
        • et al.
        Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage.
        Cardiovasc Res. 2007; 74: 456-465
        • Drew B.
        • Phaneuf S.
        • Dirks A.
        • et al.
        Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R474-R480
        • Colotti C.
        • Cavallini G.
        • Vitale R.L.
        • et al.
        Effects of aging and anti-aging caloric restrictions on carbonyl and heat shock protein levels and expression.
        Biogerontology. 2005; 6: 397-406
        • Palmer J.W.
        • Tandler B.
        • Hoppel C.L.
        Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle.
        J Biol Chem. 1977; 252: 8731-8739
        • Riva A.
        • Tandler B.
        • Lesnefsky E.J.
        • et al.
        Structure of cristae in cardiac mitochondria of aged rat.
        Mech Ageing Dev. 2006; 127: 917-921
        • Judge S.
        • Jang Y.M.
        • Smith A.
        • et al.
        Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart.
        Am J Physiol Regul Integr Comp Physiol. 2005; 289: R1564-R1572
        • Kalani R.
        • Judge S.
        • Carter C.
        • et al.
        Effects of caloric restriction and exercise on age-related, chronic inflammation assessed by C-reactive protein and interleukin-6.
        J Gerontol A Biol Sci Med Sci. 2006; 61: 211-217
        • Ide T.
        • Tsutsui H.
        • Kinugawa S.
        • et al.
        Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium.
        Circ Res. 1999; 85: 357-363
        • Li J.M.
        • Gall N.P.
        • Grieve D.J.
        • et al.
        Activation of NADPH oxidase during progression of cardiac hypertrophy to failure.
        Hypertension. 2002; 40: 477-484
        • Minhas K.M.
        • Saraiva R.M.
        • Schuleri K.H.
        • et al.
        Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy.
        Circ Res. 2006; 98: 271-279
        • Xu X.
        • Hu X.
        • Lu Z.
        • et al.
        Xanthine oxidase inhibition with febuxostat attenuates systolic overload-induced left ventricular hypertrophy and dysfunction in mice.
        J Card Fail. 2008; 14: 746-753
        • Guthikonda S.
        • Sinkey C.
        • Barenz T.
        • et al.
        Xanthine oxidase inhibition reverses endothelial dysfunction in heavy smokers.
        Circulation. 2003; 107: 416-421
        • Edirimanne V.E.
        • Woo C.W.
        • Siow Y.L.
        • et al.
        Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats.
        Can J Physiol Pharmacol. 2007; 85: 1236-1247
        • Seymour E.M.
        • Parikh R.V.
        • Singer A.A.
        • et al.
        Moderate calorie restriction improves cardiac remodeling and diastolic dysfunction in the Dahl-SS rat.
        J Mol Cell Cardiol. 2006; 41: 661-668
        • Chandrasekar B.
        • Nelson J.F.
        • Colston J.T.
        • et al.
        Calorie restriction attenuates inflammatory responses to myocardial ischemia-reperfusion injury.
        Am J Physiol Heart Circ Physiol. 2001; 280: H2094-H2102
        • Minamiyama Y.
        • Bito Y.
        • Takemura S.
        • et al.
        Calorie restriction improves cardiovascular risk factors via reduction of mitochondrial reactive oxygen species in type II diabetic rats.
        J Pharmacol Exp Ther. 2007; 320: 535-543
        • Sciacqua A.
        • Candigliota M.
        • Ceravolo R.
        • et al.
        Weight loss in combination with physical activity improves endothelial dysfunction in human obesity.
        Diabetes Care. 2003; 26: 1673-1678
        • Ross R.
        Atherosclerosis—an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126
        • Chung H.Y.
        • Sung B.
        • Jung K.J.
        • et al.
        The molecular inflammatory process in aging.
        Antioxid Redox Signal. 2006; 8: 572-581
        • Sinning C.
        • Schnabel R.
        • Peacock W.F.
        • et al.
        Up-and-coming markers: myeloperoxidase, a novel biomarker test for heart failure and acute coronary syndrome application?.
        Congest Heart Fail. 2008; 14: 46-48
        • Venugopal S.K.
        • Devaraj S.
        • Yuhanna I.
        • et al.
        Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells.
        Circulation. 2002; 106: 1439-1441
        • Retter A.S.
        • Frishman W.H.
        The role of tumor necrosis factor in cardiac disease.
        Heart Dis. 2001; 3: 319-325
        • Kanda T.
        • Takahashi T.
        Interleukin-6 and cardiovascular diseases.
        Jpn Heart J. 2004; 45: 183-193
        • Blankenberg S.
        • Barbaux S.
        • Tiret L.
        Adhesion molecules and atherosclerosis.
        Atherosclerosis. 2003; 170: 191-203
        • Meager A.
        Cytokine regulation of cellular adhesion molecule expression in inflammation.
        Cytokine Growth Factor Rev. 1999; 10: 27-39
        • Zou Y.
        • Jung K.J.
        • Kim J.W.
        • et al.
        Alteration of soluble adhesion molecules during aging and their modulation by calorie restriction.
        FASEB J. 2004; 18: 320-322
        • Phillips T.
        • Leeuwenburgh C.
        Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction.
        FASEB J. 2005; 19: 668-670
        • You T.
        • Sonntag W.E.
        • Leng X.
        • et al.
        Lifelong caloric restriction and interleukin-6 secretion from adipose tissue: effects on physical performance decline in aged rats.
        J Gerontol A Biol Sci Med Sci. 2007; 62: 1082-1087
        • Son T.G.
        • Zou Y.
        • Yu B.P.
        • et al.
        Aging effect on myeloperoxidase in rat kidney and its modulation by calorie restriction.
        Free Radic Res. 2005; 39: 283-289
        • Lane M.A.
        • Reznick A.Z.
        • Tilmont E.M.
        • et al.
        Aging and food restriction alter some indices of bone metabolism in male rhesus monkeys (Macaca mulatta).
        J Nutr. 1995; 125: 1600-1610
        • Fontana L.
        • Klein S.
        • Holloszy J.O.
        • et al.
        Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones.
        J Clin Endocrinol Metab. 2006; 91: 3232-3235
        • Bosutti A.
        • Malaponte G.
        • Zanetti M.
        • et al.
        Calorie restriction modulates inactivity-induced changes in the inflammatory markers C-reactive protein and pentraxin-3.
        J Clin Endocrinol Metab. 2008; 93: 3226-3229
        • Nicklas B.J.
        • Ambrosius W.
        • Messier S.P.
        • et al.
        Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: a randomized controlled clinical trial.
        Am J Clin Nutr. 2004; 79: 544-551
        • Kerr J.F.
        • Wyllie A.H.
        • Currie A.R.
        Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.
        Br J Cancer. 1972; 26: 239-257
        • Pollack M.
        • Phaneuf S.
        • Dirks A.
        • et al.
        The role of apoptosis in the normal aging brain, skeletal muscle, and heart.
        Ann N Y Acad Sci. 2002; 959: 93-107
        • Centurione L.
        • Antonucci A.
        • Miscia S.
        • et al.
        Age-related death-survival balance in myocardium: an immunohistochemical and biochemical study.
        Mech Ageing Dev. 2002; 123: 341-350
        • Kwak H.B.
        • Song W.
        • Lawler J.M.
        Exercise training attenuates age-induced elevation in Bax/Bcl-2 ratio, apoptosis, and remodeling in the rat heart.
        FASEB J. 2006; 20: 791-793
        • Sussman M.A.
        • Anversa P.
        Myocardial aging and senescence: where have the stem cells gone?.
        Annu Rev Physiol. 2004; 66: 29-48
        • Gottlieb R.A.
        • Burleson K.O.
        • Kloner R.A.
        • et al.
        Reperfusion injury induces apoptosis in rabbit cardiomyocytes.
        J Clin Invest. 1994; 94: 1621-1628
        • Narula J.
        • Haider N.
        • Virmani R.
        • et al.
        Apoptosis in myocytes in end-stage heart failure.
        N Engl J Med. 1996; 335: 1182-1189
        • Frustaci A.
        • Kajstura J.
        • Chimenti C.
        • et al.
        Myocardial cell death in human diabetes.
        Circ Res. 2000; 87: 1123-1132
        • Kockx M.M.
        • De Meyer G.R.
        • Muhring J.
        • et al.
        Apoptosis and related proteins in different stages of human atherosclerotic plaques.
        Circulation. 1998; 97: 2307-2315
        • Lee C.K.
        • Allison D.B.
        • Brand J.
        • et al.
        Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts.
        Proc Natl Acad Sci U S A. 2002; 99: 14988-14993
        • Rohrbach S.
        • Niemann B.
        • Abushouk A.M.
        • et al.
        Caloric restriction and mitochondrial function in the ageing myocardium.
        Exp Gerontol. 2006; 41: 525-531
        • Hofer T.
        • Servais S.
        • Seo A.Y.
        • et al.
        Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: Effects of aging and lifelong calorie restriction.
        Mech Ageing Dev. 2009; 130: 297-307
        • Crompton M.
        The mitochondrial permeability transition pore and its role in cell death.
        Biochem J. 1999; 341: 233-249
        • Shinmura K.
        • Tamaki K.
        • Bolli R.
        Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1.
        Am J Physiol Heart Circ Physiol. 2008; 295: H2348-H2355
        • Pulkki K.J.
        Cytokines and cardiomyocyte death.
        Ann Med. 1997; 29: 339-343
        • Kumar D.
        • Lou H.
        • Singal P.K.
        Oxidative stress and apoptosis in heart dysfunction.
        Herz. 2002; 27: 662-668
        • Levine B.
        • Klionsky D.J.
        Development by self-digestion: molecular mechanisms and biological functions of autophagy.
        Dev Cell. 2004; 6: 463-477
        • Shintani T.
        • Klionsky D.J.
        Autophagy in health and disease: a double-edged sword.
        Science. 2004; 306: 990-995
        • Cuervo A.M.
        Autophagy: many paths to the same end.
        Mol Cell Biochem. 2004; 263: 55-72
        • Wang C.W.
        • Klionsky D.J.
        The molecular mechanism of autophagy.
        Mol Med. 2003; 9: 65-76
        • Terman A.
        • Brunk U.T.
        Oxidative stress, accumulation of biological ‘garbage’, and aging.
        Antioxid Redox Signal. 2006; 8: 197-204
        • Nakai A.
        • Yamaguchi O.
        • Takeda T.
        • et al.
        The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress.
        Nat Med. 2007; 13: 619-624
        • Tanaka Y.
        • Guhde G.
        • Suter A.
        • et al.
        Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice.
        Nature. 2000; 406: 902-906
        • Yamamoto S.
        • Sawada K.
        • Shimomura H.
        • et al.
        On the nature of cell death during remodeling of hypertrophied human myocardium.
        J Mol Cell Cardiol. 2000; 32: 161-175
        • Hein S.
        • Arnon E.
        • Kostin S.
        • et al.
        Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms.
        Circulation. 2003; 107: 984-991
        • Elsasser A.
        • Vogt A.M.
        • Nef H.
        • et al.
        Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death.
        J Am Coll Cardiol. 2004; 43: 2191-2199
        • Kostin S.
        • Pool L.
        • Elsasser A.
        • et al.
        Myocytes die by multiple mechanisms in failing human hearts.
        Circ Res. 2003; 92: 715-724
        • Yan L.
        • Vatner D.E.
        • Kim S.J.
        • et al.
        Autophagy in chronically ischemic myocardium.
        Proc Natl Acad Sci U S A. 2005; 102: 13807-13812
        • Cuervo A.M.
        • Dice J.F.
        When lysosomes get old.
        Exp Gerontol. 2000; 35: 119-131
        • Bergamini E.
        • Cavallini G.
        • Donati A.
        • et al.
        The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases.
        Int J Biochem Cell Biol. 2004; 36: 2392-2404
        • Terman A.
        • Brunk U.T.
        Autophagy in cardiac myocyte homeostasis, aging, and pathology.
        Cardiovasc Res. 2005; 68: 355-365
        • Donati A.
        • Cavallini G.
        • Paradiso C.
        • et al.
        Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions.
        J Gerontol A Biol Sci Med Sci. 2001; 56: B375-B383
        • Wohlgemuth S.E.
        • Julian D.
        • Akin D.E.
        • et al.
        Autophagy in the heart and liver during normal aging and calorie restriction.
        Rejuvenation Res. 2007; 10: 281-292
        • Willcox B.J.
        • Willcox D.C.
        • He Q.
        • et al.
        Siblings of Okinawan centenarians share lifelong mortality advantages.
        J Gerontol A Biol Sci Med Sci. 2006; 61: 345-354
        • Kagawa Y.
        Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians.
        Prev Med. 1978; 7: 205-217
        • Wing R.R.
        • Jeffery R.W.
        Effect of modest weight loss on changes in cardiovascular risk factors: are there differences between men and women or between weight loss and maintenance?.
        Int J Obes Relat Metab Disord. 1995; 19: 67-73
        • McTigue K.M.
        • Harris R.
        • Hemphill B.
        • et al.
        Screening and interventions for obesity in adults: summary of the evidence for the U.S. Preventive Services Task Force.
        Ann Intern Med. 2003; 139: 933-949
        • Racette S.B.
        • Weiss E.P.
        • Villareal D.T.
        • et al.
        One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue.
        J Gerontol A Biol Sci Med Sci. 2006; 61: 943-950
        • Fontana L.
        • Villareal D.T.
        • Weiss E.P.
        • et al.
        Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial.
        Am J Physiol Endocrinol Metab. 2007; 293: E197-E202
        • Ashida T.
        • Ono C.
        • Sugiyama T.
        Effects of short-term hypocaloric diet on sympatho-vagal interaction assessed by spectral analysis of heart rate and blood pressure variability during stress tests in obese hypertensive patients.
        Hypertens Res. 2007; 30: 1199-1203
        • Hammer S.
        • Snel M.
        • Lamb H.J.
        • et al.
        Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function.
        J Am Coll Cardiol. 2008; 52: 1006-1012
        • Fontana L.
        • Weiss E.P.
        • Villareal D.T.
        • et al.
        Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans.
        Aging Cell. 2008; 7: 681-687
        • Heilbronn L.K.
        • de J.L.
        • Frisard M.I.
        • et al.
        Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial.
        JAMA. 2006; 295: 1539-1548
        • Civitarese A.E.
        • Carling S.
        • Heilbronn L.K.
        • et al.
        Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.
        PLoS Med. 2007; 4: e76
        • Lefevre M.
        • Redman L.M.
        • Heilbronn L.K.
        • et al.
        Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals.
        Atherosclerosis. 2009; 203: 206-213
        • Larson-Meyer D.E.
        • Newcomer B.R.
        • Heilbronn L.K.
        • et al.
        Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function.
        Obesity (Silver Spring). 2008; 16: 1355-1362
        • Weiss E.P.
        • Racette S.B.
        • Villareal D.T.
        • et al.
        Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial.
        Am J Clin Nutr. 2006; 84: 1033-1042
        • Hofer T.
        • Fontana L.
        • Anton S.D.
        • et al.
        Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans.
        Rejuvenation Res. 2008; 11: 793-799
        • Skrha J.
        • Kunesová M.
        • Hilgertová J.
        • et al.
        Short-term very low calorie diet reduces oxidative stress in obese type 2 diabetic patients.
        Physiol Res. 2005; 54: 33-39
        • Miller S.L.
        • Wolfe R.R.
        The danger of weight loss in the elderly.
        J Nutr Health Aging. 2008; 12: 487-491
        • Landi F.
        • Zuccala G.
        • Gambassi G.
        • et al.
        Body mass index and mortality among older people living in the community.
        J Am Geriatr Soc. 1999; 47: 1072-1076
        • Landi F.
        • Onder G.
        • Gambassi G.
        • et al.
        Body mass index and mortality among hospitalized patients.
        Arch Intern Med. 2000; 160: 2641-2644
        • Roth G.S.
        • Lane M.A.
        • Ingram D.K.
        Caloric restriction mimetics: the next phase.
        Ann N Y Acad Sci. 2005; 1057: 365-371
        • Lane M.A.
        • Ingram D.K.
        • Roth D.G.
        2-Deoxy-d-glucose feeding in rats mimics physiological effects of calorie restriction.
        J Anti Aging Med. 1998; 1: 327-337
        • Kopp P.
        Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’?.
        Eur J Endocrinol. 1998; 138: 619-620
        • Guarente L.
        • Picard F.
        Calorie restriction—the SIR2 connection.
        Cell. 2005; 120: 473-482
        • Howitz K.T.
        • Bitterman K.J.
        • Cohen H.Y.
        • et al.
        Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.
        Nature. 2003; 425: 191-196
        • Viswanathan M.
        • Kim S.K.
        • Berdichevsky A.
        • et al.
        A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span.
        Dev Cell. 2005; 9: 605-615
        • Valenzano D.R.
        • Terzibasi E.
        • Genade T.
        • et al.
        Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate.
        Curr Biol. 2006; 16: 296-300
        • Seya K.
        • Kanemaru K.
        • Sugimoto C.
        • et al.
        Opposite effects of two resveratrol (trans-3,5,4′-trihydroxystilbene) tetramers, vitisin A and hopeaphenol, on apoptosis of myocytes isolated from adult rat heart.
        J Pharmacol Exp Ther. 2009; 328: 90-98
        • Ray P.S.
        • Maulik G.
        • Cordis G.A.
        • et al.
        The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury.
        Free Radic Biol Med. 1999; 27: 160-169
        • Juric D.
        • Wojciechowski P.
        • Das D.K.
        • et al.
        Prevention of concentric hypertrophy and diastolic impairment in aortic-banded rats treated with resveratrol.
        Am J Physiol Heart Circ Physiol. 2007; 292: H2138-H2143
        • Chen C.K.
        • Pace-Asciak C.R.
        Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta.
        Gen Pharmacol. 1996; 27: 363-366
        • Bertelli A.A.
        • Giovannini L.
        • Giannessi D.
        • et al.
        Antiplatelet activity of synthetic and natural resveratrol in red wine.
        Int J Tissue React. 1995; 17: 1-3
        • Csiszar A.
        • Labinskyy N.
        • Podlutsky A.
        • et al.
        Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations.
        Am J Physiol Heart Circ Physiol. 2008; 294: H2721-H2735
        • Baur J.A.
        • Pearson K.J.
        • Price N.L.
        • et al.
        Resveratrol improves health and survival of mice on a high-calorie diet.
        Nature. 2006; 444: 337-342
        • Barger J.L.
        • Kayo T.
        • Pugh T.D.
        • et al.
        Short-term consumption of a resveratrol-containing nutraceutical mixture mimics gene expression of long-term caloric restriction in mouse heart.
        Exp Gerontol. 2008; 43: 859-866
        • Lekakis J.
        • Rallidis L.S.
        • Andreadou I.
        • et al.
        Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease.
        Eur J Cardiovasc Prev Rehabil. 2005; 12: 596-600
        • Zern T.L.
        • Wood R.J.
        • Greene C.
        • et al.
        Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress.
        J Nutr. 2005; 135: 1911-1917